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We propose a generalized Lanczos method to generate the many-body basis states of quantum lattice models using
tensor-network states (TNS). The ground-state wave function is represented as a linear superposition composed from a set
of TNS generated by Lanczos iteration. This method improves significantly the accuracy of the tensor-network algorithm
and provides an effective way to enlarge the maximal bond dimension of TNS. The ground state such obtained contains
significantly more entanglement than each individual TNS, reproducing correctly the logarithmic size dependence of the
entanglement entropy in a critical system. The method can be generalized to non-Hamiltonian systems and to the calculation
of low-lying excited states, dynamical correlation functions, and other physical properties of strongly correlated systems.
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1. Introduction
One of the biggest challenges and unsolved problems in

condensed matter and quantum field theory is the study of
quantum many-body systems, whose state space is exponen-
tially large. This has severely delayed our understanding of
many fascinating strongly correlated phenomena, including
high temperature superconductivity and quantum spin liquids.
Quantum Monte Carlo (QMC) simulation is one of the most
successful methods in simulating quantum many-body sys-
tems, but fails in the simulation of interacting fermions and
frustrated spin models due to the infamous minus sign prob-
lem. In recent years, tremendous progress has been achieved
in the development of numerical renormalization-group meth-
ods based on tensor-network states (TNS),[1–11] which have
emerged as a powerful theoretical tool for investigating low-
dimensional quantum lattice models.

The TNS formulation is a variational ansatz for the
ground state. It reduces the dimension of the Hilbert space,
which grows exponentially with the system size, to a poly-
nomial growth. Commonly used TNS include the one-
dimensional matrix product state (MPS),[12] which is a class
of states underlying the density-matrix renormalization group
(DMRG),[13] and the two-dimensional projected entangled
pair state (PEPS).[3] The accuracy of TNS is controlled by the

virtual bond dimension of the local tensors, D. The larger the
bond dimension is, the more accurate a TNS is. However, the
cost for computing a TNS, especially a PEPS or a projected
entangled simplex state (PESS),[11] rises rapidly with increas-
ing D. For example, the minimal cost scales as D12 for PEPS.
This has limited the bond dimension that can be handled to be
generally less than 13 in two dimensions.[6,10,11] Furthermore,
although both MPS and PEPS satisfy the area law of entan-
glement entropy,[14] in a critical or interacting fermion system
with a finite Fermi surface, there is a logarithmic correction to
the entropy. To describe correctly this logarithmic behavior, a
more complex TNS structure is required, namely, the multi-
scale entanglement renormalization ansatz (MERA) in one
dimension[5] or the branching MERA in two dimensions.[15]

The cost for handling these MERA-type wavefunctions is even
higher. Resolving this difficulty requires a new approach that
can improve significantly the accuracy of TNS without relying
on the increase of the bond dimension.

In this work, we propose a generalized Lanczos method
to solve quantum lattice models using TNS. This method is an
adaptation of the Lanczos method for the tensor network al-
gorithm, which generates a set of orthonormal many-body ba-
sis states (i.e., the Krylov subspace), represented using TNS,
by applying the Hamiltonian to the iteratively generated ba-
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sis states. At each iteration step, a new TNS is generated by
minimizing a cost function. However, as a TNS is only an ap-
proximate representation of a quantum state, the Hamiltonian
is not tri-diagonalized unlike in the standard Lanczos method.
By diagonalizing the Hamiltonian in this set of basis states,
a better ground state is obtained and represented as a linear
superposition of all the generated TNS.

This paper is organized as follows. We first introduce the
TNS-Lanczos method in Section 2. In this section, we also
present a detailed discussion on how to minimize a cost func-
tion to obtain a Lanczos vector represented by a TNS. In Sec-
tion 3, we present the results obtained with the TNS-Lanczos
method for the antiferromagnetic Heisenberg model in both
one and two dimensions. A summary is given in Section 4.

2. Method
The TNS-Lanczos method starts from a TNS, |ψ1〉, that is

determined by variationally minimizing the energy functional

f (ψ1) = 〈ψ1 |H|ψ1〉 (1)

subject to the constraint 〈ψ1|ψ1〉 = 1. |ψ1〉 is set as the first
normalized many-body basis state, |Ψ1〉 = |ψ1〉. A new TNS,
|ψ2〉, with the same bond dimension is then generated by min-
imizing the cost function

g(ψ2) = ||H |Ψ1〉−h11 |Ψ1〉− |ψ2〉||2 , (2)

where h11 is the energy of the basis state |Ψ1〉, defined by
Eq. (6). From |ψ2〉, we can construct a new normalized ba-
sis state |Ψ2〉 that is orthogonal to |Ψ1〉,

|Ψ2〉= a2 (1−|Ψ1〉〈Ψ1|) |ψ2〉 , (3)

where a2 is the normalization constant.
Similarly, from |Ψ1〉 and |Ψ2〉, we can generate another

TNS, |ψ3〉, by minimizing a cost function similar to Eq. (2).
Again, from |ψ3〉, we can construct a new normalized basis
state |Ψ3〉 that is orthogonal to both |Ψ1〉 and |Ψ2〉. By contin-
uing this iteration, we create a set of orthonormal basis states
{|Ψα〉 ;α = 1, . . . ,k} with

〈
Ψα |Ψβ

〉
= δα,β .

In general, to find the basis state |Ψα+1〉, we first generate
a TNS, |ψα+1〉, by minimizing the cost function

g(ψα+1) =

∥∥∥∥∥H |Ψα〉− ∑
β≤α

hαβ

∣∣Ψβ

〉
−|ψα+1〉

∥∥∥∥∥
2

(4)

= ‖|Φα〉− |ψα+1〉‖2 , (5)

where hαβ is the matrix element of the Hamiltonian in this set
of basis states,

hαβ =
〈
Ψα |H|Ψβ

〉
, (6)

and

|Φα〉= H|Ψα〉− ∑
β≤α

hαβ |Ψβ 〉. (7)

|Ψα+1〉 is defined by

|Ψα+1〉= aα+1

(
1− ∑

β≤α

∣∣Ψβ

〉〈
Ψβ

∣∣) |ψα+1〉 , (8)

with aα+1 being the normalization constant.
The cost function defined in Eq. (2) or more generally in

Eq. (4) can be minimized iteratively by sweeping over all lo-
cal tensors, similar to in the full-update calculation.[7] At each
step, a local tensor Ai at site i is updated with all the other
tensors fixed. The corresponding cost function for this local
tensor can be expressed as a quadratic function of Ai

g(Ai) = A†
i NiAi−

(
A†

i bi +h.c.
)
+ const, (9)

where Ni is a matrix determined by contracting the inner prod-
uct 〈ψα+1|ψα+1〉 excluding Ai and its Hermitian conjugate
A†

i , and bi is a vector determined by 〈ψα+1|Φα〉 excluding
Ai. Minimizing this function with respect to Ai yields a set
of linear equations

NiAi = bi. (10)

Ai is determined by solving this set of equations. Repeating
this iterative step until the cost function has converged, we
then obtain |ψα+1〉.
|Φα〉 is a linear superposition of α TNS. The cost for con-

tracting 〈ψα+1|Φα〉 scales linearly with α . Thus to generate
n orthonormal TNS basis states, the total computational time
needed increases roughly quadratically with n. But the con-
traction of 〈ψα+1|Φα〉 can be readily parallelized, which can
reduce the total computational time from n2 to n.

From the above iteration, we find k TNS
{|ψ1〉 , |ψ2〉 , . . . , |ψk〉} and k orthonormal basis states
{|Ψ1〉 , |Ψ2〉 , . . . , |Ψk〉} in one round of Lanczos iterations. In
this basis space, the Hamiltonian can be represented as a k×k
matrix whose matrix elements are defined by Eq. (6). By
diagonalizing this matrix, we obtain the ground-state energy
and the corresponding eigenfunction. However, the compu-
tational time scales as (k−1)2, and furthermore, due to the
accumulation of machine errors, the orthogonality of the basis
states so generated may be lost when k becomes large. To
avoid these problems, it is better not to use a large k in the
calculation, and instead, we use a relatively small k but repeat
the above steps many times. Each time we set the ground
state obtained from the previous cycle as the initial basis state,
|Ψ1〉. Of course, starting from the second round of iterations,
the initial basis state is no longer a single TNS. Instead it is a
linear superposition of all the TNS obtained previously. This
restarted Lanczos iteration can be repeated many times until
the ground-state energy converges. If we use n to denote the
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number of restarted Lanczos iterations, then the total num-
ber of TNS generated in this way equals N = n(k− 1) + 1.
The ground-state wave function is a linear superposition of
these N TNS, {|ψα〉, α = 1, . . . ,N}, which we call a Lanczos-
generated TNS (abbreviated as LTNS).

A LTNS can be generally expressed as

|Ψ〉=
N

∑
α=1

cα |ψα〉 , (11)

where cα is the coefficient of the ground-state wave function
in this tensor-network representation. This wave function can
also be represented as a single TNS. If Ai

α [mi] is the local ten-
sor of cα |ψα〉, with mi the quantum number of the physical
basis state at site i, then the local tensor of |Ψ〉 at the same site
i, Ai [mi], is simply a block-diagonal tensor defined by

Ai [mi] = diag(Ai
1,A

i
2, · · · ,Ai

N) [mi] . (12)

The bond dimension of Ai equals ND. Clearly, |Ψ〉 contains
more variational parameters than each pure TNS |ψα〉. Thus
it is not surprising that it can be more accurate than the wave
function |ψ1〉 obtained by simply minimizing the ground-state
energy.

The memory space needed for storing a LTNS scales lin-
early with N. The computational time required for generating
these basis states scales as n2(k− 1)2 = (N− 1)2. The con-
verged ground-state energy in the large-N limit depends on
the total number of TNS generated, but does not depend much
on the value of k. In the case that only the ground state is stud-
ied, it is sufficient to take k = 2. For a larger k, the ground
state energy can converge faster than the k = 2 case during the
first tens of iterations, but the entire cost is higher. The results
presented below are all obtained with k = 2.

3. Results
We test the method using the spin-1/2 antiferromagnetic

Heisenberg model with open boundary conditions in both one
and two dimensions. The Hamiltonian of the Heisenberg
model reads

H = ∑
〈i j〉

𝑆i ·𝑆 j, (13)

where 𝑆i is the SU(2) spin operator defined at site i and 〈i j〉
represents summation over nearest-neighbor lattice sites.

3.1. MPS-based Lanczos calculations

We first carry out the calculation based on the MPS rep-
resentation of the basis states. Figure 1 shows how the ground
state energy E(n) and the entanglement entropy S(n) vary with
the restarted Lanczos number n for the Heisenberg model,
obtained with MPS. As the initial E(n) and S(n), i.e. E(0)

and S(0), are just the results obtained by the standard DMRG
method, the improvement of our method over the DMRG is
quite significant if the same bond dimensions are used.

The entanglement entropy grows very rapidly with n in
the first tens of iterations and converges to a constant in
the limit n → ∞. The ground-state energy is strongly anti-
correlated with the entanglement entropy, dropping quickly
with increasing n. For example, the relative error in the
ground-state energy for L = 20 is reduced by nearly two or-
ders of magnitude for D = 8 and three orders of magnitude for
D = 12 at n = 300. The ground-state energy keeps descending
with increasing n, but with a smaller slope when the entangle-
ment entropy becomes saturated.

0

10-3

10-2

10-1

100

2

10-4

10-3

10-2

10-1

100

-8.7

-8.6

-8.5

-8.4

-8.3

n

E
↼n
↽

0.4

0.6

0.8

1.0

S
↼n
↽

D=2
D=4
D=8
D=12

[E
↼n
↽↩
E
e
x
]/
[E
↼
↽↩
E
e
x
]

E
↼
↽↩
E
e
x

D

    

300200100

(a)

(b)

Fig. 1. (color online) Ground-state energy E(n) and entanglement en-
tropy S(n) for the Heisenberg spin chain with L = 20. (a) E(n) and
S(n) versus n for D = 2. The red dashed line is the exact ground-
state energy, Eex = −8.6824733344. The inset shows the difference
between the ground state energy obtained with only one MPS, E(0),
and Eex, as a function of D. (b) Relative change of ground-state energy,
[E(n)−Eex]/ [E(0)−Eex].

By directly comparing the entanglement entropy of the
initial MPS |Ψ1〉 to that of the converged LTNS, shown in
Fig. 2(a), we find that the latter contains much more entangle-
ment than the former. In particular, the entanglement entropy
of the LTNS with D = 8 already reaches the values calculated
with DMRG by keeping as many as 1024 states, which can be
regarded as quasi-exact. Furthermore, the entanglement en-
tropy of the LTNS varies logarithmically with the system size,
indicating that the LTNS can describe correctly the scaling be-
havior of a critical system, even though each individual MPS
is bounded by the entanglement area law.
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Fig. 2. (color online) Entanglement entropy for the ground state of the
Heisenberg spin chain. (a) Converged entanglement entropy, S(∞) =
S(n→ ∞), as a function of L with D = 8 (squares) and 12 (circles),
compared with the corresponding results obtained using a single MPS,
S(n = 0) (up and down triangles), and those obtained with DMRG
by keeping 1024 states (solid line). The horizontal axis is logarith-
mic. (b) Difference between S(n) and S(∞) as a function of n, which
shows the convergence speed of S(n), for D = 8. The inset shows
the size-dependence of the restarted Lanczos number n0 at which the
entanglement entropy arrives within 1% of its converged value, i.e.,
1−S(n0)/S(∞)≤ 1%.

Figure 2(a) shows the entanglement entropy as a function
of the lattice size for the Heisenberg spin chain. For all the
lattice sizes we have studied, we find that the converged en-
tanglement entropy agrees with the equation derived from the
conformal field theory[18]

S =
c
6

lnL+b, (14)

where b is a non-universal constant and c is the central charge.
In our calculation, both c and b are weakly dependent on the
bond dimension. For D = 8 and 12, c is found to be approxi-
mately 1.014, close to the exact result, c = 1.

The entanglement entropy of the LTNS, as revealed in
Fig. 1(a), is contributed primarily by the first few tens of TNS
generated by the Lanczos iterations. To reproduce the log-
arithmic L-dependence, the number of these TNS that have
the most significant contribution to the entanglement entropy
should increase with the lattice size. This is indeed what we
find. Figure 2(b) shows how the entanglement entropy S(n)
approaches its converged value S(∞), with n for several differ-
ent values of L. Clearly, the number of TNS that have the most
significant contributions to the entanglement entropy increases

with L. If n0 is the number of TNS whose contribution to the
entanglement entropy is within 1% of the converged value, i.e.,
1− S(n0)/S(∞) ≤ 1%, we find that n0 varies almost linearly
with the system size (inset in Fig. 2(b)).

The correlation function is an important indicator of low
energy properties of the ground state. From its long-range be-
havior, one can judge whether the system is gapped or gap-
less. However, the long-range correlation function is gener-
ally difficult to determine accurately. Figure 3 compares the
correlation function and the entanglement entropy obtained
using our method with those obtained by the DMRG calcu-
lations for the S = 1/2 Heisenberg spin chain. We calculate
the correlation function when the entanglement entropy ob-
tained using the TNS-Lanczos with D = 8 becomes saturated
at n = 400. Our results agree very well with those obtained
from the DMRG calculation by keeping D = 1024 states. This
indicates that our method can yield accurate results not just for
the ground state energy and the entanglement entropy, but also
for the long range correlation functions with relatively very
small bond dimensions.
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Fig. 3. (color online) Comparison of the correlation function
〈
SiS j

〉
and

the entanglement entropy S(n) obtained by the TNS-Lanczos with those
obtained by the DMRG method for the open antiferromagnetic Heisen-
berg spin chain with L = 98. (a)

〈
SiS j

〉
versus distance ri j = |ri− r j|,

where ri is at site 20, r j runs from site 20 to site 98. (b) Entanglement
entropy S(n) versus n.

We have also calculated the ground state energy E(n) as
a function of n for the two-dimensional Heisenberg model on
the 10×10 lattice using the MPS-based Lanczos method. The
results are shown in Fig. 4. By keeping D = 1000 states, we
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find that the ground state energy obtained by taking n∼ 50 it-
erations is already lower than the DMRG result obtained with
D = 2000. For this system, D = 4000 is close to the upper
limit of the bond dimension in the standard DMRG calculation
without implementing the SU(2) symmetry due to the limita-
tion of memory space. In this case, we can still improve the
result by taking a number of Lanczos iterations. Thus, as re-
vealed by the figure, our method can be used to effectively en-
large the maximal bond dimension of MPS with very limited
increase of computational cost.
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QMC
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Fig. 4. (color online) Ground-state energy E(n) versus the restart
Lanczos step n obtained using the MPS-based Lanczos method for the
Heisenberg model on the 10× 10 lattice. The DMRG and QMC[16]

results are also shown for comparison.

3.2. PEPS-based Lanczos calculations

For the ground state represented using the PEPS or other
two-dimensional TNS, the improvement of our method over
the conventional tensor-network algorithm is even more pro-
nounced. Figure 5 shows how the ground-state energy and the
entanglement entropy obtained with PEPS vary with the Lanc-
zos number for the isotropic Heisenberg model on the 4× 4
square lattice. Similar to the one dimension case, the ground-
state energy drops very rapidly in the first tens of iterations
while the entanglement entropy grows most rapidly. As the
ground state of the two-dimensional Heisenberg model satis-
fies the entanglement area law, we find that the ground-state
energy E(n) converges even faster than its one-dimensional
counterpart. For example, with just 200 Lanczos iterations, the
accuracy of the ground-state energy is improved by 9 orders of
magnitude for D = 4. Moreover, the ground state energy con-
verges exponentially to the exact result Eex in the large n limit

E(n) = Eex +ae−µn, (15)

where a and µ are two parameters depending on both the bond
dimension and the system size. µ measures the rate of con-
vergence. Given L, µ increases rapidly with increasing D. For
D = 4, µ is quite close to that of the Lanczos ED method.
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Fig. 5. (color online) Ground-state energy and entanglement entropy
for the antiferromagnetic Heisenberg model determined by the TNS-
Lanczos method based on the PEPS representation on the 4×4 square
lattice. (a) E(n) and S(n) versus n for D = 2. The dashed line is the
exact ground-state energy, Eex =−9.1892070651930. The inset shows
the difference E(0)−Eex as a function of D. (b) Relative change of
the ground state energy, [E(n)−Eex]/ [E(0)−Eex], shown as a func-
tion of n. The result of the standard Lanczos exact diagonalization (ED)
method with order-2 Krylov subspace is also shown for comparison.
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Fig. 6. (color online) Ground-state energy E(n) versus n obtained us-
ing the PEPS-based Lanczos method for the Heisenberg model on the
10×10 lattice. The boundary MPS method is adopted to contract the
PEPS. For the PEPS with D = 2 and 3, the number of states retained
for the boundary MPS is 50 and 80, respectively. The results (horizon-
tal lines) obtained from the full-update calculation of PEPS[17] and the
QMC[16] are shown for comparison.

The TNS-Lanczos method also works very well in a sys-
tem with larger lattice size or with larger bond dimensions,
in which the overlap between two PEPS wave functions is
calculated approximately using the boundary MPS or TEBD
method.[7,19,20] As shown in Fig. 6, the ground state energies
obtained with our method for the Heisenberg model on the
10×10 lattice in the PEPS representation with D= 2 and 3 are
already lower than those obtained by the full-update method
with D = 3 and D = 6, respectively. The largest bond dimen-
sion χ of the boundary MPS used in our calculation is 80,
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which is large enough to obtain converged physical expecta-
tion values. In Fig. 7 we show the convergency of the ground
state energy with χ . More results obtained with our method
on other systems sizes are shown in Fig. 8.

Figure 9 shows a power-law fitting for the ground state
energy per site obtained by the PEPS-based Lanczos method
with D = 3 and n = 50,

E(L) = E0 +aL−α . (16)

The extrapolated ground state energy in the thermodynamic
limit is E0 = −0.66812(74), which is slightly lower than the
value obtained by the SU(2)-invariant PEPS calculation on the
infinite lattice[21] with D = 7, −0.6677, but slightly higher
than the result of Monte Carlo simulation,[22] −0.6694421(4).
The exponent α is found to be 0.91717, close to but slightly

lower than 1, which is the leading finite-size exponent ex-
pected for an open boundary system.
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Fig. 7. (color online) Bond dimension χ dependence of the ground state
energy E obtained by the boundary MPS method for the Lanczos-PEPS
wave function with D = 3 and n = 50 of the Heisenberg model on the
10×10 square lattice.
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Fig. 8. (color online) Ground-state energy per site for the two-dimensional antiferromagnetic Heisenberg model on the L×L lattice obtained
using the PEPS-based Lanczos method: (a) L = 6, (b) L = 8, (c) L = 10, (d) L = 12, (e) L = 14, (f) L = 16. The boundary MPS method is used
to contract the PEPS. For the PEPS with bond dimension D = 2 and 3, the number of states retained in the boundary MPS calculation is 50 and
80, respectively. The results obtained by the quantum Monte Carlo (QMC) simulation are also shown for comparison.[16]

0
-0.670

-0.645

-0.620

-0.595

-0.570

E
↼L
↽

L−α

energy

fitting line

0.1 0.2 0.3

Fig. 9. (color online) Power-law fitting for the ground-state energy of
the two-dimensional antiferrormagnetic Heisenberg model obtained by
the PEPS-based Lanczos method with D= 3 and n= 50. The fitting for-
mula is given in Eq. (16) and the best fitting parameter is α = 0.91717.
The extrapolated ground-state energy E0 is −0.66812(74).

4. Summary

Our proposed generalized Lanczos method provides a
powerful numerical tool to solve quantum lattice models using
TNS. It improves significantly the existing tensor-network al-
gorithm and allows the ground state to be more accurately cal-
culated using TNS. At each step of Lanczos iteration, the bond
dimension of each newly added TNS is unchanged, but the
number of parameters is increased, which allows us to obtain
a lower, hence better, ground state energy. This implies that
the TNS-Lanczos method can effectively enlarge the maximal
bond dimension of TNS that can be handled, especially for
PEPS or other TNS in two dimensions. Moreover, the ground
state wave function obtained with this method contains more
entanglement than a single TNS. It can describe correctly the
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logarithmic correction to the area law of entanglement entropy
in a critical system without invoking a mulitscale entangled
TNS, such as MERA.

In a DMRG calculation (similarly in other TNS-based
calculations), there is always an upper bound on the maximal
bond dimension or the number of states retained, Dmax, that
can be handled due to the fast growth of both the computa-
tional time and the memory space with Dmax. However, we
can effectively enlarge the maximal bond dimension by taking
a number of TNS-Lanczos iterations, starting from the DMRG
ground state wave function by keeping Dmax basis states. The
cost for carrying out this Lanczos calculation is small, because
it can be controlled just to grow linearly with the number of
iterations. It indicates that in a DMRG or other TNS calcu-
lation where the bond dimension already reaches its maximal
value, we can still significantly improve the results by taking
the Lanczos iterations. This is an advantage of this method in
comparison with other TNS methods, especially in the calcu-
lation of two-dimensional quantum lattice models with PEPS
or PESS where the bond dimension that can be treated is very
small.

In Refs. [23] and [24], a set of Lanczos-generated MPS
were used to compute dynamic correlation functions in one
dimension. In those works, each quantum many-body basis
state is approximately represented by a single MPS that is
determined simply by using the standard Lanczos tridiagonal
formulism. More explicitly, |ψα+1〉 is obtained by truncating
a higher-dimensional MPS constructed from (H − hαα)|ψα〉
and |ψα−1〉, rather than by minimizing the cost function de-
fined by Eq. (4). The basis states such generated, as noted in
Ref. [24], suffer severely from the non-orthogonality problem,
which may cause a large error in the final result. This problem
can be remedied by using our approach.

The TNS-Lanczos approach can in principle be applied
to the MPS, PEPS, or other kind of TNS with any kind of
boundary conditions. It can be extended to calculate the sec-
ond or even higher excitation states and the energy gap by
targeting two or more basis states at each Lanczos iteration.
This can be regarded as a generalization of the block Lanc-
zos method. It can be extended to finite temperature[25] and
to a non-Hamiltonian system to compute, for example, ther-
modynamic quantities using quantum transfer matrices.[26,27]

Other kind of Krylov subspace methods similar to the Lanc-
zos method, for example, the Arnoldi[28] and the conjugate-
gradient[29] methods, can also be used to generate the Krylov
basis states.
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